101k views
5 votes
A 25,000-kg train car moving at 2.50 m/s collides with and connects to a train car of equal mass moving in the same direction at 1.00 m/s. How much does the kinetic energy of the system decrease during the collision?

1 Answer

5 votes

Answer:

14062.5 J

Step-by-step explanation:

From the law of conservation of momentum,

Total momentum before collision = Total momentum after collision.

V = (m₁u₁ + m₂u₂)/(m₁+m₂).................1

Where V = common velocity after collision

Given: m₁ = m₂ = 25000 kg, u₁ = 2.5 m/s, u₂ = 1 m/s

Substitute into equation 1

V = [25000(2.5) + 25000(1)]/(25000+25000)

V = (62500+25000)/50000

V = 87500/50000

V = 1.75 m/s.

Note: The collision is an inelastic collision as such there is lost in kinetic energy of the system.

Total Kinetic energy before collision = kinetic energy of the first train car + kinetic energy of the second train car

E₁ = 1/2m₁u₁² + 1/2m₂u₂²........................ Equation 2

Where E₁ = Total kinetic energy of the body before collision, m₁ and m₂ = mass of the first train car and second train car respectively. u₁ and u₂ = initial velocity of the first train car and second train car respectively.

Given: m₁ = m₂ = 25000 kg, u₁ = 2.5 m/s, u₂ = 1 m/s

Substitute into equation 2

E₁ = 1/2(25000)(2.5)² + 1/2(25000)(1.0)²

E₁ = 12500(6.25) + 12500

E₁ = 78125+12500

E₁ = 90625 J.

Also

E₂ = 1/2V²(m₁+m₂)....................... Equation 3

Where E₂ = total kinetic energy of the system after collision, V = common velocity, m₁ and m₂ = mass of the first and second train car respectively.

Given: V = 1.75 m/s, m₁ = m₂ = 25000 kg

Substitute into equation 3

E₂ = 1/2(1.75)²(25000+25000)

E₂ = 1/2(3.0625)(50000)

E₂ = (3.0625)(25000)

E₂ = 76562.5 J.

Lost in kinetic Energy of the system = E₁ - E₂ = 90625 - 76562.5

Lost in kinetic energy of the system = 14062.5 J

User MeanwhileInHell
by
5.0k points