The coordinates of point Z are (–7, 1).
Solution:
Given data: X(–2, 6) and Y(–10, –2)
Point Z partitions the line segment XY in the ratio 5:3.
XZ : ZY = 5 : 3
X(–2, 6) can be taken as
.
Y(–10, –2) can be taken as
.
XZ : ZY can be taken as m : n = 5 : 3.
We know that coordinate of point
divides line segment joining
and
in ratio m : n is
![Z(x_3,y_3)=((mx_2+nx_1)/(m+n), (my_2+ny_1)/(m+n))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tm489qu8vlg2llgu08rdsgkewg5bt5hhd1.png)
Here,
and m = 5, n = 3.
Substitute these in the above formula, we get,
![Z\left(x_(3), y_(3)\right)=\left((5 *(-10)+3 *(-2))/(5+3), (5 *(-2)+3 *(6))/(5+3)\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/okye1tqpqrxytr13lj78tgx2mdq5ushtu1.png)
⇒
![=\left((-50-6)/(8), (-10+18)/(8)\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xarrtg0igtx5ohk2c1prjtji05079xt4kb.png)
⇒
![=\left((-56)/(8), (8)/(8)\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xcf7gbs40t1vx0t6hdy6lgb8qiulzf0fnx.png)
⇒
![Z\left(x_(3), y_(3)\right)=(-7,1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pufef4kkqnagzkfk0dwq6ez8mhscx7wc7o.png)
Hence the coordinates of point Z are (–7, 1).