5.9k views
3 votes
In the macroscopic world, you know that you can hear but cannot see around corners. Under what conditions does light bend around corners (i.e. diffract) ? Explain why sound diffracts easily around a classroom door. 5. Suppose you added to the single slit an identical slit a distance d=0.25mm away from the first. Draw the resulting interference pattern you might expect on the same screen. What happens when we increase the distance between slits ? What happens in the limit that d becomes arbitrarily large?

User Istruble
by
5.5k points

1 Answer

6 votes

Answer:

a much larger slit, the phenomenon of Sound diffraction that slits for light.

this is a series of equally spaced lines giving a diffraction envelope

Step-by-step explanation:

The diffraction phenomenon is described by the expression

d sin θ = m λ

Where d is the distance of the slit, m the order of diffraction that is an integer and λ the wavelength.

For train the diffraction phenomenon, the d / Lam ratio is decisive if this relation of the gap separation in much greater than the wavelength does not reduce the diffraction phenomenon but the phenomena of geometric optics.

The wavelength range for visible light is 4 10⁻⁷ m to 7 10⁻⁷ m. The wavelength range for sound is 17 m to 1.7 10⁻² m. Therefore, with a much larger slit, the phenomenon of Sound diffraction that slits for light.

When we add a second slit we have the diffraction of each one separated by the distance between them, when the integrals are made we arrive at the result of the interference phenomenon, a this is a series of equally spaced lines giving a diffraction envelope

When I separate the distance between the two slits a lot, the time comes when we see two individual diffraction patterns

User Stephan Michels
by
5.7k points