Answer:
x=75
Explanation:
Solving Logarithm Equations
The natural logarithm is the inverse function of the exponential function which means
![\displaystyle e^(\ln x)=x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d3rxsb12ahee4mqyfyyc9ws2lfko0k5hfk.png)
We have this equation to solve for x
![2lne^(ln2x)-lne^(10x)=ln30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/iskdfg0r9o4is8ax1ibviqweqw66hwl8zj.png)
Applying the above property
![2ln2x-ln10x=ln30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jclauvof4yqgrrky4jvve0n5x4ld719kqr.png)
Also knowing that
![a.lnb=lnb^a](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x4w0w60dd8ibf3c3fu1y3hb691r1bq5wqo.png)
We have
![ln(2x)^2-ln10x=ln30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vxr8adxphcfmqcn9dzc2edhl2be9ls4u4c.png)
Using the fundamental property of logarithms
![\displaystyle \ln(a)/(b)=lna-lnb](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ls0wuspokry3sqsdert2pkyxro40xmekd4.png)
We reduce:
![\displaystyle \ln(4x^2)/(10x)=ln30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q6zxi6v2low5blpfkroyo1o3guz7g4m5sk.png)
Taking off logarithms
![\displaystyle (4x^2)/(10x)=30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g0dmfe0dzfnqbt6cfgilkrgxvsm1gttwrj.png)
Operating
![\displaystyle 4x^2=30(10x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zxg6f6pq0bxiixed3vyjtm1vvujxs4p6by.png)
Dividing by x (assuming x different from 0)
![\displaystyle 4x=300](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6nbjjojrnq46eydfh1qzf560fedbhtd1k5.png)
Solving
![\boxed{x=75 }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/txk5qzlj0ub3s22rakb0yi9tcu8gqi39a8.png)