195k views
2 votes
Rationalize denominator when a monomial is in the denominator.Please show steps

Rationalize denominator when a monomial is in the denominator.Please show steps-example-1

1 Answer

4 votes

Answer:


\frac{\sqrt[3]{90 x^2 y z^2} }{6 y z}

Explanation:

step 1;-

Given
\frac{\sqrt[3]{5 x^2} }{\sqrt[3]{12 y^2 z} }

now you have rationalizing denominator (i.e monomial) with


\frac{\sqrt[3]{5 x^2} }{\sqrt[3]{12 y^2 z} } X \frac{\sqrt[3]{(12 y^2 z)^(2) } }{\sqrt[3]{(12 y^2 z)^2} }

By using algebraic formula is


  • √(ab) = √(a) √(b)......(a)
  • now
    \frac{\sqrt[3]{5 x^2)(12 y^2 z)^2} }{\sqrt[3]{12 y^2 z)(12 y^2 z)^2} }

  • \frac{\sqrt[3]{720 x^2 y^4 z^2} }{\sqrt[3]{(12 y^2 z)^(3) } }....(1)
  • again using Formula
    \sqrt[n]{a^(n) } =a

now simplification , we get denominator function


  • \frac{\sqrt[3]{720 x^2 y^4 z^2} }{12 y^2 z}

again you have to simplify numerator term


  • \frac{\sqrt[3]{2^3 y^3 90 (x^2  y z^2)} }{12 y^2 z}

now simplify


  • \frac{2 y\sqrt[3]{90 x^2 y  z^2} }{12 y^2 z}

cancelling y and 2 values

we get Final answer


\frac{\sqrt[3]{90 x^2 y z^2} }{6 y z}

User Shashank Sawant
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.