Answer:
![\frac{\sqrt[3]{90 x^2 y z^2} }{6 y z}](https://img.qammunity.org/2021/formulas/mathematics/college/ue30d61evwbmksojik147kr1k8vp2y6n86.png)
Explanation:
step 1;-
Given
![\frac{\sqrt[3]{5 x^2} }{\sqrt[3]{12 y^2 z} }](https://img.qammunity.org/2021/formulas/mathematics/college/5zydvo6cz4mmcbl58hrmroduog3hgzudg0.png)
now you have rationalizing denominator (i.e monomial) with
![\frac{\sqrt[3]{5 x^2} }{\sqrt[3]{12 y^2 z} } X \frac{\sqrt[3]{(12 y^2 z)^(2) } }{\sqrt[3]{(12 y^2 z)^2} }](https://img.qammunity.org/2021/formulas/mathematics/college/krjwia3po9aiuytkopyc1f0vslatt5l126.png)
By using algebraic formula is
......(a)
- now
![\frac{\sqrt[3]{5 x^2)(12 y^2 z)^2} }{\sqrt[3]{12 y^2 z)(12 y^2 z)^2} }](https://img.qammunity.org/2021/formulas/mathematics/college/2ha425fkfqf20md4sjgvbue4muca2fjroo.png)
....(1)
- again using Formula
![\sqrt[n]{a^(n) } =a](https://img.qammunity.org/2021/formulas/mathematics/college/wsgusiwvjxfka53pctywnqie4pwn3j4blx.png)
now simplification , we get denominator function
again you have to simplify numerator term
now simplify
cancelling y and 2 values
we get Final answer
![\frac{\sqrt[3]{90 x^2 y z^2} }{6 y z}](https://img.qammunity.org/2021/formulas/mathematics/college/ue30d61evwbmksojik147kr1k8vp2y6n86.png)