89.0k views
5 votes
The second-order rate constants for the reaction of oxygen atoms ·with aromatic hydrocarbons have been measured (R. Atkinson and J.N . Pitts, J. Phys. Chem. 79, 295 (1975)). In the reaction with benzene the rate constants are 1.44x 107dm' mor ' s ' at 300.3 K, 3.03 x 107 dm' mol"'s"' at 34 1.2K, and 6.9 x 107 dm' mor's ' at 392.2K. Find the frequency factor and activation energy of the reaction.

User Smartrahat
by
7.6k points

1 Answer

2 votes

Answer: Frequency factor A = 8 × 10⁹

activation energy Ea = 15.5 KJ/Mol

Explanation: to begin, let us first define the parameters given;

K₁ = 1.44 × 10⁷dm³mol⁻¹s⁻¹

K₂ = 3.03 × 10⁷ dm³mol⁻¹s⁻¹

K₃ = 6.9 × 10 dm³mol⁻¹s⁻¹

also T₁ = 300.3 K

T₂ = 341.2 K

T₃ = 392.2 K

we know that;

㏑ K₂ / K₁ = Ea/R [1/T₁ -1/T₂]

where R is given as 8.314 J/mol-k

Ea = activation energy

K₁, K₂ = rate constant

T₁, T₂ = Temperature

therefore, ㏑ (3.03 × 10⁷/ 1.44 × 10⁷) = Ea / 8.314 [1/300.3 - 1/341.2]

this gives Ea = 15496.16 J/Mol ≈ 15.5 KJ /Mol

Ea = 15.5 KJ/ Mol

also given that K = A e⁻∧Ea/RT

here A = frequency factor

∴ 6.9 × 10⁷ = A e⁻ ∧(15496.16/8.314 × 392.2)

A = 7.99 × 10⁹ = 8 × 10⁹

User Vegasbrianc
by
7.8k points