Answer:
The inequality for
is:
![x\geq 142](https://img.qammunity.org/2021/formulas/mathematics/high-school/9kc50y6u8un3ubh0gc6peb4jbgagp65ysw.png)
Explanation:
Given:
Width of rectangle = 3 ft
Height or length of rectangle =
ft
Perimeter is at least 300 ft
To write an inequality for
.
Solution:
Perimeter of a rectangle is given as:
⇒
![2l+2w](https://img.qammunity.org/2021/formulas/mathematics/high-school/cb2i44fcjv49nlul5otur42ms3im8450l9.png)
where
represents length of the rectangle and
represents the width of the rectangle.
Plugging in the given values in the formula, the perimeter can be given as:
⇒
![2(x+5)+2(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w5xc9tzx6sbibo6z55dewaao21wpj1sm0m.png)
Using distribution:
⇒
![2x+10+6](https://img.qammunity.org/2021/formulas/mathematics/high-school/md7qr8jyz206dfa1yh39ekfff7ao6ydumu.png)
Simplifying.
⇒
![2x+16](https://img.qammunity.org/2021/formulas/mathematics/high-school/5jmwgm76en0nmc4f7jga0ngctv4wrt4yxn.png)
The perimeter is at lest 300 ft. So, the inequality can be given as:
⇒
![2x+16\geq 300](https://img.qammunity.org/2021/formulas/mathematics/high-school/onuuwd4jezs21wna1tfau1rehysqweydec.png)
Solving for
![x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p9sq9b3rc5nwoqzhzc8wcaj51b36281l9g.png)
Subtracting both sides by 16.
⇒
![2x+16-16\geq 300-16](https://img.qammunity.org/2021/formulas/mathematics/high-school/380rmdpmvxv0xppdax3ji7eygr5g2b4ilw.png)
⇒
![2x\geq284](https://img.qammunity.org/2021/formulas/mathematics/high-school/urnyz1ve96lc594r7om7udhmxx0o9ysuee.png)
Dividing both sides by 2.
⇒
![(2x)/(2)\geq (284)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/us7nqd4xcgjbt008yxoxbsb9o5gooon2m3.png)
⇒
(Answer)