Answer:
Circumcenter O (0.5 , 5)
Explanation:
Circumcenter O (x , y)
OA = OB = OC
OA² = (x + 4)² + (y - 3)²
OB² = (x - 5)² + (y - 7)²
OC² = ( x + 4)² + (y - 7)²
OA² = OC² : (x + 4)² + (y - 3)² = ( x + 4)² + (y - 7)²
(y - 3)² = (y - 7)² y² - 6y + 9 = y² -14y + 49
8y = 40
y = 5
OB² = OC² : (x - 5)² + (y - 7)² = ( x + 4)² + (y - 7)²
x² - 10x + 25 = x² + 8x + 16
18x = 9
x = 0.5
Circumcenter O (0.5 , 5)