Answer:
Explanation:
To factor means to rewrite an expression as a product. Let's try dividing the expression 48m+42n48m+42n48, m, plus, 42, n by each factor.
Hint #22 / 6
Factoring out 666
\begin{aligned} &\phantom{=}48m+42n\\\\ &=6\left(\dfrac{48m+42n}{6}\right)\\\\ &=6\left(\dfrac{48m}{6}+\dfrac{42n}{6}\right) \\\\ &=6(8m+7n) \end{aligned}
=48m+42n
=6(
6
48m+42n
)
=6(
6
48m
+
6
42n
)
=6(8m+7n)
Yes, 48m+42n48m+42n48, m, plus, 42, n is equivalent to 6(8m+7n)6(8m+7n)6, left parenthesis, 8, m, plus, 7, n, right parenthesis.
Hint #33 / 6
Factoring out 333
\begin{aligned} &\phantom{=}48m+42n\\\\ &=3\left(\dfrac{48m+42n}{3}\right)\\\\ &=3\left(\dfrac{48m}{3}+\dfrac{42n}{3}\right) \\\\ &=3(16m+14n) \end{aligned}
=48m+42n
=3(
3
48m+42n
)
=3(
3
48m
+
3
42n
)
=3(16m+14n)
Yes, 48m+42n48m+42n48, m, plus, 42, n is equivalent to 3(16m+14n)3(16m+14n)3, left parenthesis, 16, m, plus, 14, n, right parenthesis.
Hint #44 / 6
Factoring out 222
\begin{aligned} &\phantom{=}48m+42n\\\\ &=2\left(\dfrac{48m+42n}{2}\right)\\\\ &=2\left(\dfrac{48m}{2}+\dfrac{42n}{2}\right) \\\\ &=2(24m+21n) \end{aligned}
=48m+42n
=2(
2
48m+42n
)
=2(
2
48m
+
2
42n
)
=2(24m+21n)
No, 48m+42n48m+42n48, m, plus, 42, n is not equivalent to 2(12m+21n)2(12m+21n)2, left parenthesis, 12, m, plus, 21, n, right parenthesis.
Hint #55 / 6
Factoring out 777
\begin{aligned} &\phantom{=}48m+42n\\\\ &=7\left(\dfrac{48m+42n}{7}\right)\\\\ &=7\left(\dfrac{48m}{7}+\dfrac{42n}{7}\right) \\\\ &=7\left(\dfrac{48}{7}m+6n\right) \end{aligned}
=48m+42n
=7(
7
48m+42n
)
=7(
7
48m
+
7
42n
)
=7(
7
48
m+6n)
No, 48m+42n48m+42n48, m, plus, 42, n is not equivalent to 7(7m+6n)7(7m+6n)7, left parenthesis, 7, m, plus, 6, n, right parenthesis.
Hint #66 / 6
The following expressions are equivalent to 48m+42n48m+42n48, m, plus, 42, n:
6(8m+7n)6(8m+7n)6, left parenthesis, 8, m, plus, 7, n, right parenthesis
3(16m+14n)3(16m+14n)3, left parenthesis, 16, m, plus, 14, n, right parenthesis
Related content