Answer:
r = 20; s = - 10; t = 1
Explanation:
The GCD of 6, 14, 21.
We have to know that gcd(a, b, c) = gcd(gcd(a, b), c)
Also, gcd(a, b) = au + bv, u & v are integers.
Now, gcd(6, 14, 21) = gcd(gcd(6, 14), 21)
= gcd(2, 21)
= 1
Again gcd(6, 14) = 2 & gcd(2, 21) = 1
⇒ 6(-2) + 14(1) = 2 & 2(-10) + 21(1) = 1
Now, gcd(6, 14, 21) = gcd(gcd(6, 14), 21)
= gcd(2, 21)
= 2(-10) + 21(1)
= {6(-2) + 14(1)}(-10) + 21(1)
= 6(20) + 14(-10) + 21(1)
Therefore, we get: r = 20; s = - 10; t = 1
Hence, the answer.