Step-by-step explanation:
001
Given:
v₀ = 0 m/s
v = 30.9 m/s
t = 4.6 s
Find: Δx
Δx = ½ (v + v₀) t
Δx = ½ (30.9 m/s + 0 m/s) (4.6 s)
Δx = 71.07 m
The circumference of the tire is π (0.547 m) = 1.72 m. So the number of revolutions is:
71.07 m / 1.72 m = 41.4 revolutions
002
Given:
ω₀ = 3.6π rad/s
ω = 8.8π rad/s
t = 5.0 s
Find: α
ω = αt + ω₀
(8.8π rad/s) = α (5.0 s) + (3.6π rad/s)
α = 3.3 rad/s²
003
1 rev / 365.25 days × (1 day / 24 hr) × (1 hr / 3600 s) × (2π rad/rev)
= 1.99×10⁻⁷ rad/s