Answer:
C.) π
Explanation:
Given function:
![f(x)=cos(2x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/eguqmyk4yhhjl82mspd3e912yovze62ler.png)
To find the period of the function.
Solution:
The general cosine function is given as:
![f(x)= A cos (Bx)](https://img.qammunity.org/2021/formulas/mathematics/high-school/e47n6908fs5xty6pngcptah75lip44wplx.png)
where
represents the amplitude of the function and the period of the function is given as:
⇒
![(2\pi)/(B)](https://img.qammunity.org/2021/formulas/mathematics/college/8s3olukzbw44pzdah8c85up6s0ocxyxzr8.png)
For the given function:
![f(x)=cos(2x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/eguqmyk4yhhjl82mspd3e912yovze62ler.png)
The period is given as:
⇒
![(2\pi)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/v6004fz4bk9dutttibzojqsa77uw2nppg2.png)
Cancelling the common terms, we have:
⇒
![\pi](https://img.qammunity.org/2021/formulas/mathematics/high-school/2j2worn9ytoxzzhoj9a714ilg18jf2lvx4.png)
Thus, period of the given function = π