Answer:
See explanation
Explanation:
16. Two parallel lines are cut by transversal. Angles with measures
and
are alternate exterior angles. By alternate exterior angles, the measures of alternate exterior angles are the same:
![6x+20=x+100\\ \\6x-x=100-20\\ \\5x=80\\ \\x=16](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4plm45jpxpakf7uks4r5uwp0n5kjkslae7.png)
Then
![(6x+20)^(\circ)=(6\cdot 16+20)^(\circ)=116^(\circ)\\ \\(x+100)^(\circ)=(16+100)^(\circ)=116^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/toiskiv153wll1ngtxy5hq7i3svldppjca.png)
17. Two parallel lines are cut by transversal. Angles with measures
and
are alternate interior angles. By alternate interior angles, the measures of alternate interior angles are the same:
![2x+12=3x-22\\ \\2x-3x=-22-12\\ \\-x=-34\\ \\x=34](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qcfoj5o04w34vcwnmo3cud31h42poree7c.png)
Then
![(2x+12)^(\circ)=(2\cdot 34+12)^(\circ)=80^(\circ)\\ \\(3x-22)^(\circ)=(3\cdot 34-22)^(\circ)=80^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tswod4h5of2fecghgihcloeawe63i59oyh.png)
18. Two parallel lines are cut by transversal. Angles with measures
and
are alternate exterior angles. By alternate interior angles, the measures of alternate exterior angles are the same:
![6x-7=5x+10\\ \\6x-5x=10+7\\ \\x=17](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2dxji2ckcnouhhognllw1mq5o07udltlvn.png)
Then
![(6x-7)^(\circ)=(6\cdot 17-7)^(\circ)=95^(\circ)\\ \\(5x+10)^(\circ)=(5\cdot 17+10)^(\circ)=95^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6owknxdgj1ojlk6hykdoxk58vo8o9nas8b.png)
19. The diagram shows two complementary angles with measures
and
. The measures of complementary angles add up to
then
![2x+56=90\\ \\2x=90-56\\ \\2x=34\\ \\x=17](https://img.qammunity.org/2021/formulas/mathematics/middle-school/axpehnaxnoivbesjl2big1n4tzw0pgp4dz.png)
Hence,
![2x^(\circ)=2\cdot 17^(\circ)=34^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lhdxyqgh9embzyovezam7f1nmybxj47um5.png)
Check:
![34^(\circ)+56^(\circ)=90^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rdy2q2q9dtzkk98wjhik4jqy58gdzpz4nm.png)
20. Angles
and
are vertical angles. By vertical angles theorem, vertical angles are congruent, so
![m\angle 1=m\angle 2\\ \\5x+7=3x+15\\ \\5x-3x=15-7\\ \\2x=8\\ \\x=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nqit7wag0ppj0o1j9fugkkfvq57ddcm5js.png)
Hence,
![m\angle 1=(5x+7)^(\circ)=(5\cdot 4+7)^(\circ)=27^(\circ)\\ \\m\angle 2=(3x+15)^(\circ)=(3\cdot 4+15)^(\circ)=27^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/px2dxzd8g7pzqu043x30ica14v71unx3nk.png)
21.
and
are supplementary. The measures of supplementary angles add up to
so
![m\angle 5+m\angle 8=180^(\circ)\\ \\3x-40+7x-120=180\\ \\10x-160=180\\ \\10x=180+160\\ \\10x=340\\ \\x=34](https://img.qammunity.org/2021/formulas/mathematics/middle-school/su2eo9fbhbxywbyaxxa0flv3zvk0ljpru6.png)
Therefore,
![m\angle 5=(3x-40)^(\circ)=(3\cdot 34-40)^(\circ)=62^(\circ)\\ \\m\angle 8=(7x-120)^(\circ)=(7\cdot 34-120)^(\circ)=118^(\circ)\\ \\62^(\circ)+118^(\circ)=180^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u1vqsut3sstq72trq9jockibu6wk7ntw0b.png)