43.7k views
5 votes
13 POINTS- please help me

13 POINTS- please help me-example-1
User Explodes
by
4.8k points

1 Answer

1 vote

Answer:

See explanation

Explanation:

16. Two parallel lines are cut by transversal. Angles with measures
(6x+20)^(\circ) and
(x+100)^(\circ) are alternate exterior angles. By alternate exterior angles, the measures of alternate exterior angles are the same:


6x+20=x+100\\ \\6x-x=100-20\\ \\5x=80\\ \\x=16

Then


(6x+20)^(\circ)=(6\cdot 16+20)^(\circ)=116^(\circ)\\ \\(x+100)^(\circ)=(16+100)^(\circ)=116^(\circ)

17. Two parallel lines are cut by transversal. Angles with measures
(2x+12)^(\circ) and
(3x-22)^(\circ) are alternate interior angles. By alternate interior angles, the measures of alternate interior angles are the same:


2x+12=3x-22\\ \\2x-3x=-22-12\\ \\-x=-34\\ \\x=34

Then


(2x+12)^(\circ)=(2\cdot 34+12)^(\circ)=80^(\circ)\\ \\(3x-22)^(\circ)=(3\cdot 34-22)^(\circ)=80^(\circ)

18. Two parallel lines are cut by transversal. Angles with measures
(6x-7)^(\circ) and
(5x+10)^(\circ) are alternate exterior angles. By alternate interior angles, the measures of alternate exterior angles are the same:


6x-7=5x+10\\ \\6x-5x=10+7\\ \\x=17

Then


(6x-7)^(\circ)=(6\cdot 17-7)^(\circ)=95^(\circ)\\ \\(5x+10)^(\circ)=(5\cdot 17+10)^(\circ)=95^(\circ)

19. The diagram shows two complementary angles with measures
2x^(\circ) and
56^(\circ). The measures of complementary angles add up to
90^(\circ), then


2x+56=90\\ \\2x=90-56\\ \\2x=34\\ \\x=17

Hence,


2x^(\circ)=2\cdot 17^(\circ)=34^(\circ)

Check:


34^(\circ)+56^(\circ)=90^(\circ)

20. Angles
\angle 1 and
\angle 2 are vertical angles. By vertical angles theorem, vertical angles are congruent, so


m\angle 1=m\angle 2\\ \\5x+7=3x+15\\ \\5x-3x=15-7\\ \\2x=8\\ \\x=4

Hence,


m\angle 1=(5x+7)^(\circ)=(5\cdot 4+7)^(\circ)=27^(\circ)\\ \\m\angle 2=(3x+15)^(\circ)=(3\cdot 4+15)^(\circ)=27^(\circ)

21.
\angle 5 and
\angle 8 are supplementary. The measures of supplementary angles add up to
180^(\circ), so


m\angle 5+m\angle 8=180^(\circ)\\ \\3x-40+7x-120=180\\ \\10x-160=180\\ \\10x=180+160\\ \\10x=340\\ \\x=34

Therefore,


m\angle 5=(3x-40)^(\circ)=(3\cdot 34-40)^(\circ)=62^(\circ)\\ \\m\angle 8=(7x-120)^(\circ)=(7\cdot 34-120)^(\circ)=118^(\circ)\\ \\62^(\circ)+118^(\circ)=180^(\circ)

User Asaf Chertkoff
by
5.2k points