61.2k views
2 votes
Find the limit (enter 'DNE' if the limit does not exist)

Hint: rationalize the denominator.

lim(x,y)→(0,0)(−2x^2−6y^2)/sqrt(−2x^2−6y^2+1)-1

1 Answer

4 votes

Answer:


\lim\limits_((x,y)\rightarrow(0,0))\left(√(-2x^2-6y^2+1)+1\right)=2

Explanation:

We need to first simplify the expression using rationalization(i.e. if a square root term exists in the denominator, then multiply and divide the whole expression by the denominator(but the change the sign of its middle term))

here, we need to find:


\lim\limits_((x,y)\rightarrow(0,0))\left((-2x^2-6y^2)/(√(-2x^2-6y^2+1)-1)\right)

first we'll rationalize our expression:


(-2x^2-6y^2)/(√(-2x^2-6y^2+1)-1)\left((√(-2x^2-6y^2+1)+1)/(√(-2x^2-6y^2+1)+1)\right)


(-(2x^2+6y^2)(√(-2x^2-6y^2+1)+1))/((√(-2x^2-6y^2+1)+1)^2-(1)^2)


(-(2x^2+6y^2)(√(-2x^2-6y^2+1)+1))/(-2x^2-6y^2+1-1)


(-(2x^2+6y^2)(√(-2x^2-6y^2+1)+1))/(-(2x^2+6y^2))


√(-2x^2-6y^2+1)+1

this is our simplified expression, now we can apply our limits:


\lim\limits_((x,y)\rightarrow(0,0))\left(√(-2x^2-6y^2+1)+1\right)


√(-2(0)^2-6(0)^2+1)+1


1+1


2

the limit does exists and it is 2.

User Nitheesh K P
by
4.9k points