Answer:
Explanation:
The given question incomplete; here is the complete question given in the attachment.
The rate of change of the mass A of salt at the time 't' is proportional to the square of the mass of salt present at the time t.
∝ A²
= kA² [k = proportionality constant]
And the given conditions are
and
![A_(10)=4](https://img.qammunity.org/2021/formulas/mathematics/college/df9ok76rfm59c5hxvologvk1dkmffz5a2r.png)
a).
![(dA)/(dt)=kA^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/hzpmn6odslxgbheemcuox7f16494nkl2in.png)
and
![A_(10)=4](https://img.qammunity.org/2021/formulas/mathematics/college/df9ok76rfm59c5hxvologvk1dkmffz5a2r.png)
b). From the differential equation
![(dA)/(dt)=kA^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/hzpmn6odslxgbheemcuox7f16494nkl2in.png)
![(dA)/(A^(2) )=kdt](https://img.qammunity.org/2021/formulas/mathematics/college/iynhddbj7rxvzr5kpkcmj209vmjyvhvqyv.png)
By integration on both the sides of the equation.
![\int {(1)/(A^(2) ) } \, dA=k\int dt](https://img.qammunity.org/2021/formulas/mathematics/college/sxq030709z6fxiitz30f9ct0y65bxh73nn.png)
[c = integration constant]
From the given conditions in the question,
For
,
![-(1)/(10)=k* 0+c](https://img.qammunity.org/2021/formulas/mathematics/college/3oobu3fql4ikhykiedum3rb4b5clh5x1gp.png)
c =
![-(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/6vnqltz01egveobb12mlm5iye54f9o1e3x.png)
For
,
![-(1)/(4)=k* 10+c](https://img.qammunity.org/2021/formulas/mathematics/college/6udlvyevniyigcwkiy049yiaypx2tar8nv.png)
Since c =
![-(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/6vnqltz01egveobb12mlm5iye54f9o1e3x.png)
Therefore,
![-(1)/(4)=10k-(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/cexq80rtfkrrg2ift91bj8eg0zck0ge612.png)
k =
![(1)/(10)((1)/(10)-(1)/(4))](https://img.qammunity.org/2021/formulas/mathematics/college/zadmms3qac7qyz10wgcy6ssk3v9p34a3k8.png)
k =
![(1)/(10)* ((4-10))/(40)](https://img.qammunity.org/2021/formulas/mathematics/college/zo0rrld9u4y0wchwqy0ryzx82cs5jnfc5t.png)
k = -
![(6)/(400)](https://img.qammunity.org/2021/formulas/mathematics/college/ez861ojqirx6766yf7ci0816a3uj5d8o88.png)
k = -
![(3)/(200)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4jp4ksgs7juw6b1xodawakvaynh6b0mkfb.png)
Now we place the values of constants in the solution of integration
![(1)/(A)=(3t+20)/(200)](https://img.qammunity.org/2021/formulas/mathematics/college/iaa2cu1e6hptrok4wkrz9sdfg32omi7fur.png)
A =
![(200)/(3t+20)](https://img.qammunity.org/2021/formulas/mathematics/college/yis23xjca3xpsiaxuugbj3wkqv2huur7sw.png)
c). Now we have to calculate the time when A(t) < 1
From part b,
![A_(t)=(200)/(3t+20)](https://img.qammunity.org/2021/formulas/mathematics/college/b93961710gxvjpjwlfijd1erwmifzqqmka.png)
Therefore,
![(200)/(3t+20)<1](https://img.qammunity.org/2021/formulas/mathematics/college/v77t2akao9mblwyz9x2l41b2q7agn5yg3j.png)
By solving the inequality,
3t + 20 > 200
3t > 200 - 20
3t > 180
t > 60
Therefore, after 60 hours
![A_(t)<1](https://img.qammunity.org/2021/formulas/mathematics/college/adt4vmwyhvfmja97hv9vow3ec364knkwjj.png)