Answer: The boiling point of solution is 80.32°C
Step-by-step explanation:
To calculate the molality of solution, we use the equation:
![\text{Molality of the solution}=\frac{m_(solute)* 1000}{M_(solute)* W_(solvent)\text{ in grams}}](https://img.qammunity.org/2021/formulas/chemistry/college/jw7ukh84w6sphsuwz9bk0cddtk2g7se8pf.png)
Where,
= Given mass of solute (eugenol) = 0.144 g
= Molar mass of solute (eugenol) = 164.2 g/mol
= Mass of solvent (benzene) = 10.0 g
Putting values in above equation, we get:
![\text{Molality of eugenol}=(0.144* 1000)/(164.2* 10.0)\\\\\text{Molality of eugenol}=0.088m](https://img.qammunity.org/2021/formulas/chemistry/college/vvgu1qgsu2a14lb0ez17i7ki1sxwev2b5u.png)
To calculate the elevation in boiling point, we use the equation:
![\Delta T_b=iK_bm](https://img.qammunity.org/2021/formulas/chemistry/college/v9r4u565bdksca37flfi17o3khtik4bvce.png)
where,
= elevation in boiling point =
![\text{Boiling point of solution}-\text{Boiling point of pure solution}](https://img.qammunity.org/2021/formulas/chemistry/college/wz0txsgji6v357uewxidqjnutpf4yjjiee.png)
Boiling point of pure solution (benzene) = 80.1°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal boiling point elevation constant = 2.53°C/m
m = molality of solute = 0.088 m
Putting values in above equation, we get:
![\text{Boiling point of solution}-80.1=1* 2.53^oC/m* 0.088m\\\\\text{Boiling point of solution}=0.22+80.1=80.32^oC](https://img.qammunity.org/2021/formulas/chemistry/college/u0smee1lxr401qf1sb7fayup27c49cf9in.png)
Hence, the boiling point of solution is 80.32°C