Answer:
c = 18
Explanation:
The minimum value of the quadratic falls on the graph of the quadratic (parabola). So we can substitute the x and y values from the coordinate pair and use algebra to solve for c.
Given
x = 2
y = 10
Putting in the equation, we have:
![2(2)^2 -8(2)+c=10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nq74orfgx0rma1w35ptrkzm3n4t606ivft.png)
Solving for c:
![2(2)^2 -8(2)+c=10\\8-16+c=10\\-8+c=10\\c=10+8\\c=18](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f6592vausrfmf8nczsr1tm5hlcgjk5ei5l.png)
So,
The value of c is 18