184k views
1 vote
Determine the x and y please

Determine the x and y please-example-1

1 Answer

6 votes

Answer:

x = 7 and y = 3.2

Explanation:


\bold{DOMAIN}\\\\2x+4>0\qquad\text{subtract 4 from both sides}\\2x>-4\qquad\text{divide both sides by 2}\\x>-2\qquad(a)\\\\3x-1>0\qquad\text{add 1 to both sides}\\3x>1\qquad\text{divide both sides by 3}\\x>(1)/(3)\qquad(b)\\\\x^2-9>0\qquad\text{add 9 to both sides}\\x^2>9\to x <-\sqrt9\ \vee\ x>\sqrt9\to x<-3\ \vee\ x>3\qquad(c)\\\\5y+2>0\qquad\text{subtract 2 from both sides}\\5y>-2\qquad\text{divide both sides by 5}\\y>-0.4\qquad(d)\\\\\text{From}\ (a),\ (b),\ (c)\ \text{and}\ (d)\ \text{we have:}\\\\\boxed{D:x>3\ \wedge\ y>-0.4}


|AD|=|BD|\ \text{and}\ |AE|=|EC|\\\\\text{therefore}\ DE\ \text{and}\ BC\ \text{are parallel}.\\\\\text{Corresponding segments are in proportion}.\\\\(AD)/(AE)=(BD)/(CE)\qquad/|AE|=|EC|/,\ \text{therefore}\\\\(AD)/(AE)=(BD)/(AE)\Rightarrow AD=BD\\\\\text{First equation:}\ 2x+4=5y+2\qquad(1)\\\\(AD)/(DE)=(AB)/(BC)\\\\(2x+4)/(3x-1)=(2x+4+5y+2)/(x^2-9)\qquad(2)\\\\\text{Substitute (1) to (2)}


(5y+2)/(3x-1)=(5y+2+5y+2)/(x^2-9)\\\\(5y+2)/(3x-1)=(2(5y+2))/(x^2-9)\\\\(5y+2)/(3x-1)=(5y+2)/((1)/(2)(x^2-9))\iff3x-1=(1)/(2)(x^2-9)\qquad\text{multiply both sides by 2}\\\\6x-2=x^2-9\qquad\text{subtract}\ 6x\ \text{from both sides}\\\\-2=x^2-6x-9\qquad\text{add 2 to both sides}


x^2-6x-7=0\\\\x^2-7x+x-7=0\\\\x(x-7)+1(x-7)=0\\\\(x-7)(x+1)=0\iff x-7=0\ \vee\ x+1=0\\\\x-7=0\qquad\text{add 7 to both sides}\\\\x=7\in D\\\\x+1=0\qquad\text{subtract 1 from both sides}\\\\x=-1\\otin D


\text{Put}\ x=7\ \text{to (1):}\\\\5y+2=2(7)+4\\\\5y+2=14+4\\\\5y+2=18\qquad\text{subtract 2 from both sides}\\\\5y=16\qquad\text{divide both sides by 5}\\\\y=3.2\in D

User Anders Revsgaard
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories