34.8k views
4 votes
Which expression is equivalent to log Subscript 8 Baseline 4 a (StartFraction b minus 4 Over c Superscript 4 Baseline EndFraction)?

log Subscript 8 Baseline 4 + log Subscript 8 Baseline a minus log Subscript 8 Baseline (b minus 4) minus 4 log Subscript 8 Baseline c
log Subscript 8 Baseline 4 + log Subscript 8 Baseline a + (log Subscript 8 Baseline (b minus 4) minus 4 log Subscript 8 Baseline c)
log Subscript 8 Baseline 4 a + log Subscript 8 Baseline b minus 4 minus 4 log Subscript 8 Baseline c minus 4
log Subscript 8 Baseline 4 + log Subscript 8 Baseline a minus log Subscript 8 Baseline (b minus 4) minus log Subscript 8 Baseline 4 c

User Cheluis
by
7.7k points

2 Answers

1 vote

Answer:

Its b

Explanation:

edge 2022

User Farzad Kamali
by
7.3k points
1 vote

Answer:


\log _(8) 4+\log _(8) a+\log _(8)(b-4)-4 \log _(8) c

The equivalent expression is log Subscript 8 Baseline 4 + log Subscript 8 Baseline a + (log Subscript 8 Baseline (b minus 4) minus 4 log Subscript 8 Baseline c)

Explanation:

The expression is written as
\log _(8)\left(4 a\left((b-4)/(c^(4))\right)\right)

Using the log rule:
\log _(c)(x y)=\log _(c) x+\log _(c) y, the expression can be written as,


\log _(c)(x y)=\log _(c) x+\log _(c) y

Using the log rule:
\log _(c)\left((x)/(y)\right)=\log _(c) x-\log _(c) y , the expression can be written as,


\log _(8) 4+\log _(8) a+\log _(8)(b-4)-\log _(8) c^(4)

Since, we know that,
\log _(a) x^(b)=b \log _(a) x, the expression is written as,


\log _(8) 4+\log _(8) a+\log _(8)(b-4)-4 \log _(8) c

Thus, the equivalent expression is log Subscript 8 Baseline 4 + log Subscript 8 Baseline a + (log Subscript 8 Baseline (b minus 4) minus 4 log Subscript 8 Baseline c)

User Stefan Hoffmann
by
7.9k points