205k views
1 vote
What is the electric field at the position (x1,y1)=(−5.0 cm, 5.0 cm) in component form?

User Nawroth
by
4.3k points

1 Answer

3 votes

Answer:

Step-by-step explanation:

Calculate the distance between origin O
\left( {0\;{\rm{cm,}}\;0\;{\rm{cm}}} \right) and the point
\left( { - 5.0\;{\rm{cm,}}\;5.0\;{\rm{cm}}} \right) as follows:

Substitute 0 cm for
{x_1} ,0cm for
{y_1} , - 5.0\;{\rm{cm}} for
{x_2} , and
5.0\;{\rm{cm}} for
{y_2} in
r = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}


\begin{array}{c}\\r = \sqrt {{{\left( { - 5.0\;{\rm{cm}}\; - 0\;{\rm{cm}}} \right)}^2} + {{\left( {5.0\;{\rm{cm}}\; - 0\;{\rm{cm}}} \right)}^2}} \\\\ = 5\sqrt 2 \;{\rm{cm}}\\\end{array}

The electric field is,


E = k\frac{q}{{{r^2}}}

Substitute
9 * {10^9}\;{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}} for k, 10 nC for q, and
5\sqrt 2 \;{\rm{cm}} for r in
E = k\frac{q}{{{r^2}}}


\begin{array}{c}\\E = \frac{{\left( {9 * {{10}^9}} \right)\left( {10\;{\rm{nC}}} \right)}}{{{{\left( {5\sqrt 2 \;{\rm{cm}}} \right)}^2}}}\\\\ = \frac{{\left( {9 * {{10}^9}\;{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\left( {10\;{\rm{nC}}} \right)\left( {\frac{{{{10}^( - 9)}{\rm{C}}}}{{1\;{\rm{nC}}}}} \right)}}{{{{\left( {\left( {5\sqrt 2 \;{\rm{cm}}} \right)\left( {\frac{{{{10}^( - 2)}\;{\rm{m}}}}{{1\;{\rm{cm}}}}} \right)} \right)}^2}}}\\\\ = 1.8 * {10^4}\;{\rm{N/C}}\\\end{array}

Therefore, the electric field at the position
\left( { - 5.0\;{\rm{cm,}}\;5.0\;{\rm{cm}}} \right) is
1.8 * {10^4}\;{\rm{N/C}}

The electric field is inversely proportional to the square of the distance r.

The electric field in vector form is,


\vec E = {\vec E_(2x)}i + {\vec E_(2y)}j

Here,
{\vec E_(2x)} is the x component of electric field vector, and
{\vec E_(2y)} is the y component of electric field vector.

The x component of electric field vector is
- E\cos \theta, and the y component of electric field vector is
E\sin \theta.

Substitute
- E\cos \theta for
{\vec E_(2x)}, and
E\sin \theta for
{\vec E_(2y)} in
\vec E = {\vec E_(2x)}i + {\vec E_(2y)}j


\begin{array}{c}\\\vec E = \left( { - E\cos \theta } \right)i + \left( {E\sin \theta } \right)j\\\\ = \left( E \right)\left( {\left( { - \cos \theta } \right)i + \left( {\sin \theta } \right)j} \right)\\\end{array}

Substitute
1.8 * {10^4}\;{\rm{N/C}} for E, and 450 for
\thetaθ in
\vec E = \left( E \right)\left( {\left( { - \cos \theta } \right)i + \left( {\sin \theta } \right)j} \right)


\begin{array}{c}\\\vec E = \left( {1.8 * {{10}^4}\;{\rm{N/C}}} \right)\left( { - \cos 45i + \sin 45j} \right)\\\\ = - \left( {1.27\;{\rm{N/C}}} \right)i + \left( {1.27\;{\rm{N/C}}} \right)j\\\end{array}

Therefore, the electric field vector in component form is,


\left( {{{\vec E}_(2x)},{{\vec E}_(2y)}} \right) = \left( { - 1.27\;{\rm{N/C}},\,1.27\;{\rm{N/C}}} \right){\rm{N/C}}

The point
\left( { - 5.0\;{\rm{cm,}}\;5.0\;{\rm{cm}}} \right) lies in the second quadrant, so the x component of electric field vector is negative, and y component of the electric field vector is positive

User Ferrangb
by
3.5k points