Answer:
± 27.33 ft
Explanation:
For the given problem, we can estimate the initial and final coordinates of the line of the ball path as (-40,-50) and (0,0). Therefore, the slope is:
(-50-0)/(-40-0) = 50/40 = 1.25
Similarly, we can estimate the slope of a perpendicular line to the line of the ball path as: -1*(1/1.25) = -0.8.
Therefore, using (0,0) and the slope -0.8, the equation of the perpendicular line is: -0.8 = (y-0)/(x-0);
-0.8 = y/x
y = -0.8x
Furthermore, we are given the circle radius as 35 ft and we can use the distance formula to find the two points 35 ft far from the origin:
35^2 = x^2 + y^2
y = -0.8x
35^2 = x^2 + (-0.8x)^2
1225 = (x^2 + 0.64x^2)
1225 = 1.64x^2
x^2 = 1225/1.64 = 746.95
x = sqrt(746.95) = ± 27.33 ft