Answer:
0.0062
Explanation:
Let X be the random variable blood pressure.The information we are given are
mean blood pressure=μx=120
standard deviation blood pressure=σx=8
we have to find P(mean bp>122)=P(xbar>122).
P(Xbar>122)=P(xbar-μxbar/σxbar>122-μxbar/σxbar)=P(Z>122-μxbar/σxbar)
Now, we have to find μxbar and σxbar. We know that
μxbar=μx
σxbar=σx/sqrt(n).
So, μxbar=μx=120
σxbar=σx/sqrt(n)=8/sqrt(100)=0.8
P(Xbar>122)=P(Z>122-120/0.8)=P(Z>2.5)=P(0<z<∞)-P(0<z<2.5)
From normal distribution table P(0<z<2.5)=0.4938 and we know that P(0<z<∞)=0.5. So,
P(Xbar>122)=0.5-0.4938=0.0062
There is 0.62% chance that the mean blood pressure of 100 people will be greater than 122