Answer:
Explanation:
For this case we want to find the density function for
![Y=X^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/ir22lv5oywgp7r2zhdz92zhzzxck8f6jn2.png)
And we have the following density function for the random variable X:
![f(X) = 1- |X|,-1 \leq X \leq 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/a1r67vn7v7q4d9xgfg457wte2iv7bl20he.png)
So we can do this replacing
![Y=X^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/ir22lv5oywgp7r2zhdz92zhzzxck8f6jn2.png)
![F_Y (Y \leq y) = P(X^2 \leq y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5o2qketd019cy2bgx5o9uv2bbqh9gc8rqq.png)
If we apply square root on both sides we got:
![P(-√(y) \leq X \leq √(y)) = \int_(-√(y))^0 1+t dt +\int_(0)^(√(y)) 1-t dt](https://img.qammunity.org/2021/formulas/mathematics/high-school/isfx6xqysdpi23tk1zhjloqe90013rb7fo.png)
And if we integrate we got this:
![F_Y (y) = [t+ (t^2)/(2)] \Big|_(-√(y))^0+ [t -(t^2)/(2)] \Big|_(0)^(√(y))](https://img.qammunity.org/2021/formulas/mathematics/high-school/276jrc07cbyipyuylz4lq2mr7atwb77h9y.png)
And replacing we got:
![F_Y (y) = [0 -(-√(y) +(y)/(2))] + [√(y) -(y)/(2)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/3nnnati710ncxid814xpcuyw06w80d412f.png)
![F_Y (y) = 2 |√(y)| -y](https://img.qammunity.org/2021/formulas/mathematics/high-school/u11wl9e9b3x6h6i335j70ygsrv6j81uxyb.png)
And if we want to find the density function we just need to derivate the pdf like this: