Answer:
The angle between the resultant of the two forces and the x-axis is 56.93°.
Step-by-step explanation:
Given that,
Magnitude of the vector F = 84 N
Magnitude of the vector P = 77 N
Angle for F= 47°
Angle for P = 52°
We need to calculate the resultant vector
Using formula of resultant vector
![\vec{R}=\vec{F}+\vec{P}](https://img.qammunity.org/2021/formulas/physics/high-school/tiyy58gbt8yty2mqewigiolhg8z2vxcibk.png)
![\vec{R}=85(\cos47i+\sin47j)+77(\cos52i+\sin52j)](https://img.qammunity.org/2021/formulas/physics/high-school/ri7ee8j4r7co182noa2930du6muov9hbqc.png)
![\vec{R}=85\cos47+77\cos52+85\sin47+77\sin52](https://img.qammunity.org/2021/formulas/physics/high-school/uqtzmsnlrpripgcish72v4v2d0d8it1v1j.png)
![\vec{R}=105.35i+122.84j](https://img.qammunity.org/2021/formulas/physics/high-school/6dd5fkb3kv9pdkkyebovbfdkd8caiyx2cb.png)
We need to calculate the magnitude
![R=√((105.35)^2+(122.84)^2)](https://img.qammunity.org/2021/formulas/physics/high-school/dh4i87989y8cs1kzsnw3vx0us1v2lbr1ky.png)
![R=161.82\ N](https://img.qammunity.org/2021/formulas/physics/high-school/vwpsd06v39f134jj76v3ghgke2jc8x9080.png)
We need to calculate the angle between the resultant of the two forces and the x-axis
Using formula of angle
![\tan\theta=(R)/(105.34)](https://img.qammunity.org/2021/formulas/physics/high-school/61lib9v834o2ocwyk3a8si4dt1ytzqq52e.png)
![\theta=\tan^(-1)((R)/(105.34))](https://img.qammunity.org/2021/formulas/physics/high-school/i7tz0pucnf6i2r6e4v4mn275qpoc9ytxob.png)
Put the value into the formula
![\theta=\tan^(-1)((161.82)/(105.34))](https://img.qammunity.org/2021/formulas/physics/high-school/l9jphpp6b2ttyy48gujitarunssc5vhpg8.png)
![\theta=56.93^(\circ)](https://img.qammunity.org/2021/formulas/physics/high-school/po04zduomgbzijt8usl3lse0lukxfuxain.png)
Hence, The angle between the resultant of the two forces and the x-axis is 56.93°.