Answer:
A polynomial with complex coefficients of degree n has n complex roots, counted with multiplicity.
Explanation:
We are given a polynomial p(x) in the question with degree n.
The degree n means the n is the highest power of variable in the given polynomial.
The equation:
![p(x) = 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/uze7f2oqa2l65ao4fxefnilqmvw19mibec.png)
Fundamental theorem of Algebra
- The Fundamental theorem of Algebra states that a a polynomial of degree n will have n roots of the equation.
This can further be explained as:
- A polynomial with complex coefficients of degree n has n complex roots, counted with multiplicity.