Answer : The heat required is, 7200 calories.
Explanation :
The process involved in this problem are :
![(1):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(2):H_2O(l)(0^oC)\rightarrow H_2O(l)(100^oC)\\\\(3):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)](https://img.qammunity.org/2021/formulas/chemistry/high-school/s6zvplcx6d1daxgnvsa063slrscrljmt8u.png)
The expression used will be:
![\Delta H=m* \Delta H_(fusion)+[m* c_(p,l)* (T_(final)-T_(initial))]+m* \Delta H_(vap)](https://img.qammunity.org/2021/formulas/chemistry/high-school/bc324qx8jas3k8swtybtdjpadx6g7aji32.png)
where,
m = mass of ice = 10.0 g
= specific heat of liquid water =
![1cal/g^oC](https://img.qammunity.org/2021/formulas/chemistry/high-school/z1v5akztqc9feh1w947b10l0je85te45c5.png)
= enthalpy change for fusion =
![80.0cal/g](https://img.qammunity.org/2021/formulas/chemistry/high-school/vrkeevc3sw9bh5zar8anry912uth4f9fxf.png)
= enthalpy change for vaporization =
![540cal/g](https://img.qammunity.org/2021/formulas/chemistry/high-school/z1pg8ha0ivo1vljq54ymsa73bcfukzvoo7.png)
Now put all the given values in the above expression, we get:
![\Delta H=10.0g* 80.0cal/g+[10.0g* 1cal/g^oC* (100-0)^oC]+10.0g* 540cal/g](https://img.qammunity.org/2021/formulas/chemistry/high-school/4e4zkbasyc3cta2fdf9meq7x4yyaq8lrxo.png)
![\Delta H=7200cal](https://img.qammunity.org/2021/formulas/chemistry/high-school/k8jpkzo07kgv552z2yqp2pllj33b9nutpd.png)
Therefore, the heat required is, 7200 calories.