Answer:
![(x+1)^2+(y+4)^2=(6√(2))^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/r71ubbbsejeyd9wghjebfzfllyxcx3txam.png)
Explanation:
The length of the diameter
will be the distance between
![(5,-10)\ and\ (-7,2).](https://img.qammunity.org/2021/formulas/mathematics/high-school/d2yy4lrxtb6j6yjkn58wsg3x92quh3kj8a.png)
![d=√((2-(-10))^2+(-7-5)^2)=√((12)^2+(-12)^2)=√(144+144)=√(288)\\\\d=12√(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zrpyktgkicpv62epmjv80klm2e7nqwr3uz.png)
Radius:
![radius(r)=(diameter)/(2)=(12√(2))/(2)=6√(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/x051wplj7ccnxz7gtm9phfahn6qm7i2ydn.png)
Centre:
Let
be centre of the circle.
Centre will be the mid point of end points of diameter.
![a=(5-7)/(2)=(-2)/(2)=-1\\\\b=(-10+2)/(2)=(-8)/(2)=-4\\\\Centre=(-1,-4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qq4ncm8kjp3z4oar4733u0pybqg3uqrqp0.png)
Equation of circle:
If
be centre and
be the radius.
Equation of circle:
![(x-a)^2+(y-b)^2=r^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/ycacfxnx2plnn5fwvvlol31pbly7tal4xx.png)
Here
![(a,b)=(-1,-4)\ and\ r=6√(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sjvug8g02m95xr47j9v0h6ibzw0z0d5n9o.png)
![(x-(-1))^2+(y-(4))^2=(6√(2))^2\\(x+1)^2+(y+4)^2=(6√(2))^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/z57le6186kekwvt0b7912a75ux97um88iu.png)