Answer:
420^2 = 300^2 + 250^2 - 2(300)(250)cosC
Explanation:
a = 300
b= 250
c = 420
C= ??
Using Cosine rule
Cos C = (a^2 + b^2 - c^2) / 2ab
Cos C = (300^2 + 250^2 - 420^2) / 2*300*250
= (90000 + 62500 - 176400) / 150000
= -23900/150000
= -0.159
C = cos^-1(-0.159)
C = 80.85°
To find angle A
Cos A = (b^2 + c^2 - a^2) / 2bc
Cos A = (250^2 + 420^2 - 300^2) / 2*250*420
= (62500 + 176400 - 90000) / 210000
= 0.71
A = cos^-1(0.71)
A = 44.77°
A+B+C = 180°
B = 180 - (A+C)
B = 180 + (80.85 + 44.77)
B = 54.38°