Answer:
![g'(0.1)=3.288](https://img.qammunity.org/2021/formulas/mathematics/college/v4vgggelgmahpqf4a5ihvwofxihq8wtame.png)
Explanation:
We are given that f(x) be a continuous and differentiable function on interval [0,1]
![g(x)=f(3x)](https://img.qammunity.org/2021/formulas/mathematics/college/d25gxfx50l3iiuf2lvfwqsd546lbgbjs6x.png)
We have to find the value of g'(0.1)
Differentiate w.r.t x
![g'(x)=3f'(3x)](https://img.qammunity.org/2021/formulas/mathematics/college/xnp4z6171ium3k0gnc2i9f3jbhme0bvacq.png)
Substitute x=0.1
![g'(0.1)=3f'(3(0.1))=3f'(0.3)](https://img.qammunity.org/2021/formulas/mathematics/college/sv8hq5bdx2lk44j6hymrb9hwhzh6lcfbeo.png)
Substitute the value of f'(0.3) from given table
![g'(0.1)=3(1.096)](https://img.qammunity.org/2021/formulas/mathematics/college/ofhpz1zvfy4pu2575zm3iiqpuhq64sw71y.png)
![g'(0.1)=3.288](https://img.qammunity.org/2021/formulas/mathematics/college/v4vgggelgmahpqf4a5ihvwofxihq8wtame.png)
Hence, the value of g'(0.1)=3.288