Answer:
![\vec{F}_x = (2KQqa)/((a^2 + y^2)^(3/2)) \^x](https://img.qammunity.org/2021/formulas/physics/college/q2oid6smus1a6xu9t5myi07o6sqhlrorah.png)
Step-by-step explanation:
The Coulomb's Law gives the force by the charges:
![\vec{F} = K(q_1q_2)/(r^2)\^r](https://img.qammunity.org/2021/formulas/physics/college/907db4tptva71nmak4x09m4tb3s82seyq4.png)
Let us denote the positon of the charge q on the y-axis as 'y'.
The force between 'Q' and'q' is
![F_1 = K(Qq)/(x^2 + y^2)\\F_1_x = F_1\cos(\theta)](https://img.qammunity.org/2021/formulas/physics/college/4lrtzbhfm179pffkd9elodzstx1th0i4xc.png)
where Θ is the angle between
and x-axis.
![F_1_x = K(Qq)/(x^2 + y^2)((x)/(√(x^2 + y^2))) = (KQqa)/((a^2 + y^2)^(3/2))](https://img.qammunity.org/2021/formulas/physics/college/c2vhcc9kxcir9zcv5cpg7gdijw3h9olnbr.png)
whereas
![F_2_x = K(-Qq)/(a^2 + y^2)(-(a)/(√(a^2 + y^2))) = (KQqa)/((a^2 + y^2)^(3/2))](https://img.qammunity.org/2021/formulas/physics/college/a7ch7iw27g75vknspwq4vir63ofcqy1cx6.png)
Finally, the x-component of the net force is
![\vec{F}_x = (2KQqa)/((a^2 + y^2)^(3/2)) \^x](https://img.qammunity.org/2021/formulas/physics/college/q2oid6smus1a6xu9t5myi07o6sqhlrorah.png)