25.9k views
4 votes
Given tan(theta)= -2 and pi/2 < theta < pi; find cos theta)

User Pattie
by
5.0k points

1 Answer

4 votes

Answer:


\cos \theta=-(1)/(√(5))

Explanation:


Given\ \tan \theta=-2\ \ \ \ \ -(\pi)/(2)<\theta<\pi

Hence
\theta is in second quadrant.


\tan \theta=(opposite)/(adjacent)=-2\\\\Length\ of\ opposite=2,\ \ Length\ of\ adjacent=1\\

Pythagorean Theorem:
hypotenuse^2=opposite^2+adjacent^2


hypotenuse^2=(1)^2+(2)^2=1+4=5\\hypotenuse=√(5)


\cos \theta=(adjacent)/(hypotenuse)\\\\\cos \theta=(1)/(√(5))

But in the second quadrant
\cos \theta will be negative.

Hence


\cos \theta=-(1)/(√(5))

User Roel Van Nyen
by
4.8k points