The approximate value for t is 5.54
Answer: Option B
Explanation:
The law of cosines generalizes the Pythagorean formula to all triangles. It says that
, the square of one side of the triangle, is equal to
product times the cosine of the opposite angle. When the angle C is right, it becomes the Pythagorean formula.
![c^(2)=a^(2)+b^(2)-2 a b \cos C](https://img.qammunity.org/2021/formulas/mathematics/high-school/ae4p54lze1rrbln5kadmv83buhmfungtzh.png)
According to the given triangle in figure, the values are
a = 5
b = 4
c = t
![\cos C=\cos 75^(\circ)=0.2588](https://img.qammunity.org/2021/formulas/mathematics/high-school/t9m58uhdtd4e694jkwwgr6ges65re18n7c.png)
Substituting all the given values in the formula, we get
![t^(2)=5^(2)+4-(2 * 5 * 4 * 0.2588)](https://img.qammunity.org/2021/formulas/mathematics/high-school/91abe7k6fjaf39wl18ivboyljvo4j0v1vh.png)
![t^(2)=25+16-10.3527](https://img.qammunity.org/2021/formulas/mathematics/high-school/es5qnfrn9yan96nufaebjau2ocgscrx6ny.png)
![t^(2)=41-10.3527=30.647](https://img.qammunity.org/2021/formulas/mathematics/high-school/z4thns3qc22msp1iwt8uussu6yqmhlitot.png)
Taking square roots, we get the value for ‘t’ as below,
![t=√(30.647)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4qnfvhmwmk23btdetvg19gqhv747zj59oh.png)
t = 5.536 (approximately 5.54)