35.0k views
3 votes
Find the area of the parallelogram with vertices: P(0,0,0), Q(-4,3,-1), R(-4,2,-2), S(-8,5,-3).

User Rancho
by
3.9k points

1 Answer

3 votes

Answer:

Explanation:

Co-ordinate of point P(0,0,0)

Q (-4,3,-1)

R (-4,2,-2)

S (-8,5,-3)


\vec{PQ}=<-4,3,-1>


\vec{PS}=<-8,5,-3>

Area of Parallelogram
=|\vec{PQ}* \vec{PS}|


Area=\begin{vmatrix}i &amp;j &amp;k \\ -4 &amp;3 &amp;-1 \\ -8 &amp;5 &amp;-3 \end{vmatrix}


A=|\hat{i}(-9+5)-\hat{j}(-12-8)+\hat{k}(-20+24)|


A=|-4\hat{i}+20\hat{j}+4\hat{k}|


A=√((-4)^2+(20)^2+(4)^2)


A=√(432)


A=20.78\ unit^2

User Shivankgtm
by
4.1k points