35.0k views
3 votes
Find the area of the parallelogram with vertices: P(0,0,0), Q(-4,3,-1), R(-4,2,-2), S(-8,5,-3).

User Rancho
by
7.9k points

1 Answer

3 votes

Answer:

Explanation:

Co-ordinate of point P(0,0,0)

Q (-4,3,-1)

R (-4,2,-2)

S (-8,5,-3)


\vec{PQ}=<-4,3,-1>


\vec{PS}=<-8,5,-3>

Area of Parallelogram
=|\vec{PQ}* \vec{PS}|


Area=\begin{vmatrix}i &amp;j &amp;k \\ -4 &amp;3 &amp;-1 \\ -8 &amp;5 &amp;-3 \end{vmatrix}


A=|\hat{i}(-9+5)-\hat{j}(-12-8)+\hat{k}(-20+24)|


A=|-4\hat{i}+20\hat{j}+4\hat{k}|


A=√((-4)^2+(20)^2+(4)^2)


A=√(432)


A=20.78\ unit^2

User Shivankgtm
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories