a) ( 0.8509718, 0.8890282)
b) ( 0.7255, 0.7745)
Step-by-step explanation:
(a)
Given that , a = 0.05, Z(0.025) =1.96 (from standard normal table)
So Margin of error = Z × sqrt(p × (1-p)/n) = 1.96 × sqrt(0.87 × (1-0.87) / 1200)
=0.01902816
So 95 % confidence interval is
p+/-E
0.87+/-0.01902816
( 0.8509718, 0.8890282)
(b)
Margin of error = 1.96 × sqrt (0.75 × (1-0.75) / 1200) = 0.0245
So 95% confidence interval is
p+/-E
0.75+/-0.0245
( 0.7255, 0.7745)