Value of x is:
Explanation:
Given Fraction,
![(8)/(40) = (x)/(30)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mmg9e89v41l07nb2fi2gtcvsy4p89dc0hi.png)
Further we can solve by cross multiplication,
![\sf 40 * x = 8 * 30](https://img.qammunity.org/2023/formulas/mathematics/high-school/j1ah9tqxgqx08vkcy6q0bmenfp7r7fnuxn.png)
![\sf 40x = 240](https://img.qammunity.org/2023/formulas/mathematics/high-school/9hebcndnwztug9peo410up4pdut2p062tj.png)
Divide both sides by 40,
![\sf (40x)/(40) = \frac {240}{40}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tmj0f3mc3mq0mr4wn6ri8s1mjntkv1uzct.png)
![\sf x = 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/d3gsnu9ic0vuadgicxr9szpar6ha0ofhg5.png)
Verifying our answer.
Simply put the value of x in the given fraction ,
![(8)/(40) = (6)/(30)](https://img.qammunity.org/2023/formulas/mathematics/high-school/k0vaqt7kdt2fihmrid3g2p0e6sqvwcbfc3.png)
We know that,
![\sf (1)/(5)= (1)/(5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/w7d6sv15e4xw88dwdsty6l2scpfz93h8q0.png)
Hence, x = 6 makes a true equivalent fraction statement.