183k views
0 votes
Simplify the expression.

(-1)^5^2/(-2)^-3^2
A) 64
B) 2^-30
C) 2^30
D) 1/64

User Terma
by
7.8k points

1 Answer

4 votes

Answer:

Option A is correct.

A) 64

Explanation:

Given:

The given expression =
((-1^5)^2)/((-2^(-3))^2)

Now we need to simplify the given expression.

Solution:

=
((-1^5)^2)/((-2^(-3))^2)

Rewrite the expression as.

=
(((-1)^5)/((-2)^(-3)))^(2)-------(1)

First we expand numerator
(-1)^(5)=(-1* -1)* (-1* -1)* -1


=(1)* (1)* -1


=(1* 1)* -1


=1* -1


(-1)^(5)= -1

Similarly we simplify the denominator
(-2)^(-3).


(-2)^(-3)=(1)/((-2)^(3))


(-2)^(-3)=(1)/((-2* -2)* -2)


(-2)^(-3)=(1)/(4* -2)


(-2)^(-3)=(1)/(-8)

Now we substitute
(-1)^(5)=-1 and
(-2)^(-3)=(1)/(-8) in equation 1.


(((-1)^5)/((-2)^(-3)))^(2)=((-1)/((1)/(-8)))^(2)

Negative sign is cancelled.


(((-1)^5)/((-2)^(-3)))^(2)=((1)/((1)/(8)))^(2)

So we write the equation as.


(((-1)^5)/((-2)^(-3)))^(2)=8^(2)


(((-1)^5)/((-2)^(-3)))^(2)= 64

Therefore the answer is 64

User Trevor Norris
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.