Answer:
There is enough evidence to claim that population mean 1 is less than population 2 at the 0.05 significance level.
Explanation:
We are given the following in the question:
Group 1:
![\mu_1 = 63.3\\\sigma_1 = 3.7\\n_1 = 11](https://img.qammunity.org/2021/formulas/mathematics/college/twjoa177qzbezgktjo3jhu19vgewdo4hog.png)
Group 2:
![\mu_2 = 70.2\\\sigma_2 = 6.6\\n_2 = 13](https://img.qammunity.org/2021/formulas/mathematics/college/k6m9in38p7gzr5s05g31t5iy5m7mj1582p.png)
Alpha, α = 0.05
First, we design the null and the alternate hypothesis
Since, the population variances are equal and that the two populations are normally distributed, we use t-test(pooled test) for difference of two means.
Formula:
Pooled standard deviation
![s_p = \sqrt{\displaystyle((n_1-1)\sigma_1^2 + (n_2-1)\sigma_2^2 )/(n_1 + n_2 - 2)}](https://img.qammunity.org/2021/formulas/mathematics/college/rvsbnmn8erqvdjp3008wlut4sf7cx705u1.png)
![t_(stat) = \displaystyle\frac{\mu_1-\mu_2}{s_p\sqrt{(1)/(n_1)+(1)/(n_2)}}](https://img.qammunity.org/2021/formulas/mathematics/college/v70gyc3l4i8tl594xv4cz59118a82547wi.png)
![\text{Degree of freedom} = n_1 + n_2 - 2](https://img.qammunity.org/2021/formulas/mathematics/college/jeibjyoy58qap66fqu2c9g3179xtofyj5q.png)
Putting all the values we get:
![s_p = \sqrt{\displaystyle((11-1)(3.7)^2 + (13-1)(6.6)^2 )/(11 + 13 - 2)} = √(29.9827) = 5.48](https://img.qammunity.org/2021/formulas/mathematics/college/myh2mvz5d8xkh215e82vyii14zjnilzc26.png)
![t_(stat) = \displaystyle\frac{63.3-70.2}{5.48\sqrt{(1)/(11)+(1)/(13)}} = -3.073](https://img.qammunity.org/2021/formulas/mathematics/college/l72u7782bgg0ceug3vjpsbi4ynb4o8ffij.png)
![\text{Degree of freedom} = 11 + 13 - 2 = 22](https://img.qammunity.org/2021/formulas/mathematics/college/d4bz83qcydkuvyptvan44s2b8h0v1d2uyk.png)
Now,
![t_(critical) \text{ at 0.05 level of significance, 22 degree of freedom } = -1.717](https://img.qammunity.org/2021/formulas/mathematics/college/40u53p8xhwji3rfdecztl0e8yv9k65112u.png)
Since,
![t_(stat) < t_(critical)](https://img.qammunity.org/2021/formulas/mathematics/college/5foxobbxgzh9jl3yd4sd08mvi2duc6cm0c.png)
We fail to accept the null hypothesis and reject the null hypothesis. We accept the alternate hypothesis.
We conclude that the mean score for Group 1 is significantly lower than the mean score for Group 2.
There is enough evidence to claim that population mean 1 is less than population 2 at the 0.05 significance level.