109k views
0 votes
For vector A = 5 i hat + 3 j - 4 k, vector B = - 5 i hat + 5 j + k, and vector C = 2 j - 3 k, find vector C· (vector A - vector B) to three significant figures.

User Hmuelner
by
5.1k points

1 Answer

5 votes

Answer:

The value of
\overrightarrow {C}\cdot (\overrightarrow {A}-\overrightarrow {B}) in three significant figures is 11.0.

Explanation:

The given vectors are


\overrightarrow A=5i+3j-4k


\overrightarrow B=-5i+5j+k


\overrightarrow C=2j-3k

We need to find the value of
\overrightarrow {C}\cdot (\overrightarrow {A}-\overrightarrow {B})

Subtraction of two vectors.


\overrightarrow {A}-\overrightarrow {B}=5i+3j-4k-(-5i+5j+k)


\overrightarrow {A}-\overrightarrow {B}=5i+3j-4k+5i-5j-k


\overrightarrow {A}-\overrightarrow {B}=(5+5)i+(3-5)j+(-4-1)k


\overrightarrow {A}-\overrightarrow {B}=10i-2j-5k

Dot product of two vectors.


\overrightarrow {C}\cdot (\overrightarrow {A}-\overrightarrow {B})=(2j-3k)\cdot (10i-2j-5k)


\overrightarrow {C}\cdot (\overrightarrow {A}-\overrightarrow {B})=(0)(10)+(2)(-2)+(-3)(-5)


\overrightarrow {C}\cdot (\overrightarrow {A}-\overrightarrow {B})=-4+15=11

Therefore, the value of
\overrightarrow {C}\cdot (\overrightarrow {A}-\overrightarrow {B}) in three significant figures is 11.0.

User Nolwennig
by
4.6k points