190k views
4 votes
4. Show that both x1(t) = e−tcos tandx2(t) = e−tsin t are solutions to the second-order differential equation x′′+ 2x′+ 2x = 0. Show that x(t) = Ae−tsin t + Be−tcos t is a solution for any values of the constants A and B

1 Answer

5 votes

Answer:

Shown!

Explanation:

First let's show that the given parameters are solutions of ODE.


x_1(t) = e^(-t)\cos t\\x_1'(t) = -e^(-t)\cos t-e^(-t)\sin t\\x_1''(t) = e^(-t)\cos t+e^(-t)\sin t+e^(-t)\sin t-e^(-t)\cos t=2e^(-t)\sin t\\\\x''+2x'+2x =2e^(-t)\sin t-2e^(-t)\cos t-2e^(-t)\sin t+2e^(-t)\cos t=0


[tex]x_2(t) = e^(-t)\sin t\\x_2'(t) = -e^(-t)\sin t+e^(-t)\cos t\\x_2''(t) = e^(-t)\sin t-e^(-t)\cos t-e^(-t)\cos t-e^(-t)\sin t=-2e^(-t)\cos t\\\\x''+2x'+2x =-2e^(-t)\cos t-2e^(-t)\sin t+2e^(-t)\cos t+2e^(-t)\sin t=0

Is is showed that both are the solutions.

Now, let's prove it for general case by solving ODE.


x''+ 2x'+ 2x = 0\\r^2+2r+2=0\\

Roots are
r_1 = -1-i,\:r_2=-1+i

So the solution is as follows:


x(t)=C_1e^((-1-i)t)+C_2e^((-1+i)t)

Since by Euler's Formula,


e^(-it)=\cos t - i\sin t\\e^(it)=\cos t+i\sin t

Hence,


x(t) = Ae^(-t)\sin t+ Be^(-t)\cos t

User Matt Innes
by
6.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.