=
![(45)/(-7) \text { or }-6.4285](https://img.qammunity.org/2021/formulas/mathematics/college/e3qf5o6i2hbs2623s3k7np0hy8lpptu1u4.png)
Explanation:
Given expression:
![7\left((1)/(2)\right) /(-2)\left((5)/(6)\right)](https://img.qammunity.org/2021/formulas/mathematics/college/bgdm6mc8jkbntufjqpeq4et5gqud3ynzxe.png)
![(7\left((1)/(2)\right))/((-2)\left((5)/(6)\right))](https://img.qammunity.org/2021/formulas/mathematics/college/put7lh5dcudeupalx4otdut8j00gwzdxa4.png)
The fraction
can be written by multiplying 7 with 2 and add to ‘1’. So,
![7\left((1)/(2)\right)=(14+1)/(2)=(15)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/wp1m2pl9ml6g745m6az0v9764ol2tk446g.png)
The fraction
can be written by multiplying (-2) with 6 and add to ‘5’. So,
![(-2)\left((5)/(6)\right)=(-12+5)/(6)=(-7)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/1lv2ktnv2u4cvfdkz7jk4urajjpqbaoujj.png)
Applying these, we get
![((15)/(2))/((-7)/(6))](https://img.qammunity.org/2021/formulas/mathematics/college/xql2poff16wcze7degfyotjqo3a0eukjhi.png)
When do solving with numerator fraction, the denominator fraction
can be written as
. Therefore,
![(15)/(2) * (6)/(-7)=(15 * 3)/(-7)=(45)/(-7)=-6.4285](https://img.qammunity.org/2021/formulas/mathematics/college/98yzpikqsme4qd97jtlbxeu9ael6mb81bp.png)