Answer:
t=160.82 years
Explanation:
exponential decay function is
![A= A_1 e^(kt)](https://img.qammunity.org/2021/formulas/mathematics/college/rgr5wg16iu9b2qoxgqzj1skvkvr1fywvnw.png)
If initial amount A_1 is 100 then material remaining is 99.57
![99.57=100e^(kt)](https://img.qammunity.org/2021/formulas/mathematics/college/24qv34etvozyrjb8mgf6f7cvleqszpdbi8.png)
divide both sides by 100, question says 1 year so t=1
![.9957=e^(k(1))](https://img.qammunity.org/2021/formulas/mathematics/college/a6uql8ix3ldnp0feibfynre51fidkfpuf2.png)
take ln on both sides
![ln(.9957)=k](https://img.qammunity.org/2021/formulas/mathematics/college/w600zgbagamfuptlb4r8kcqxcf62ctz2mi.png)
k=-.00431
![A=100e^(-.00431t)](https://img.qammunity.org/2021/formulas/mathematics/college/9npm8w05a8a6y5kkoez2xho67w7aqd875m.png)
t=1, A= 50 remaining (half life)
![50=100e^(-.00431(t))](https://img.qammunity.org/2021/formulas/mathematics/college/lnpkeg75dtfulk13671n1eyt1te5mm7v9l.png)
divide both sides by 100
![0.5=e^(-.00431t)](https://img.qammunity.org/2021/formulas/mathematics/college/8qqavrn0ndjd7i8hv95pykueo3rgdorin2.png)
take ln on both sides
t=160.82 years