Eigenvalue:
In a linear system of equations, eigenvalues are actually special set of scalars which are associated with these equations.
Singular Matrix:
A matrix whose determinant is Zero is called singular matrix.
Explanation:
![Let A = \left[\begin{array}{ccc}a1&a2&a3\\a4&a5&a6\\a7&a8&a9\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/f2vxzff9b4gyenb7bc6ts7uj93a8c77ehb.png)
![Identity Matrix = I = \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/6d1q6n9xh0z8o7nzefb7s1bg1pgj76jcgw.png)
.
If Matrix A is singular it means that
det (A) = 0
det (A-0.I)=0
because
![0*\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] = \left[\begin{array}{ccc}0&0&0\\0&0&0\\0&0&0\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/zsdcwumwfxhgr6c3wfcvua936oeovh1pdi.png)
So,
det (A-0.I) = 0 implies that 0 is eigenvalue of matrix A.