209k views
0 votes
Determining Exponential Growth and Decay in Exercise, use the given information to write an exponential equation for y. Does the function represent exponential growth or exponential decay?

dy/dt = -2/3y, y = 20 when t = 0

User Shannon
by
4.8k points

1 Answer

1 vote

Answer:


y=20e^{-(2)/(3)t}

Exponential decay

Explanation:

We are given that


(dy)/(dt)=-(2)/(3)y

y=20 when t=0


(dy)/(y)=-(2)/(3)dt

Taking integration on both sides then we get


lny=-(2)/(3)t+C

Using formula
\int (dx)/(x)=lnx,\int dx=x


y=e^{-(2)/(3)t+C}

Using formula


lnx=y\implies x=e^y


y=e^C\cdot e^{-(2)/(3)t}


e^C=Constant=C


y=Ce^{-(2)/(3)t}

Substitute y=20 and t=0


20=C

Substitute the value of C


y=20e^{-(2)/(3)t}

When t tends to infinity then


\lim_(t\rightarrow\infty)=\lim_(t\rightarrow\infty)20e^{-(2)/(3)t}=0

When time increases then the value of function decrease

Hence, the function is exponential decay.

User Mike Hornblade
by
5.7k points