151k views
5 votes
Finding Derivatives Implicity In Exercise, find dy/dx implicity.
4x3 + ln y2 + 2y = 2x

1 Answer

2 votes

Answer:


(dy)/(dx)=(y(1-6x^2))/((1+y))

Explanation:

Given function : 4x³ + ln(y²) + 2y = 2x

on differentiating both sides with respect to 'x', we get


(d(4x^3 + ln(y^2) + 2y))/(dx)= (d(2x))/(dx)

or


12x^2+(2)/(y)((dy)/(dx))+2((dy)/(dx))=2

or


12x^2+((2)/(y)+2)(dy)/(dx)=2

or


((2+2y)/(y))(dy)/(dx)=2-12x^2

or


(dy)/(dx)=(y(2-12x^2))/(2+2y)

or


(dy)/(dx)=(2y(1-6x^2))/(2(1+y))

or


(dy)/(dx)=(y(1-6x^2))/((1+y))

User Fravadona
by
5.2k points