45.3k views
3 votes
Finding Derivatives Implicity In Exercise, find dy/dx implicity.
x2 - 3 ln y + y2 = 10

User DonnaLea
by
5.4k points

1 Answer

7 votes

Answer:


(dy)/(dx)=-(2xy)/(2y^2-3)

Explanation:

We are given that


x^2-3lny+y^2=0

Differentiate w.r.t x


2x-(3)/(y)(dy)/(dx)+2y(dy)/(dx)=0

By using formula


(dx^n)/(dx)=nx^(n-1)


(d(lnx))/(dx)=(1)/(x)


(dy^n)/(dx)=ny^(n-1)(dy)/(dx)


(dy)/(dx)(-(3)/(y)+2y)+2x=0


(dy)/(dx)(-(3)/(y)+2y)=-2x


(dy)/(dx)=-(2x)/(-(3)/(y)+2y)


(dy)/(dx)=-(2xy)/(2y^2-3)

Hence, the derivative of function


(dy)/(dx)=-(2xy)/(2y^2-3)

User Vitule
by
5.6k points