187k views
4 votes
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.

g(x) = ln {e^x + e^-x/2}

1 Answer

3 votes

Answer:


g'(x)=\frac{2e^x-e^{-(x)/(2)}}{2(e^x+e^{-(x)/(2)})}

Explanation:

We are given that a function


g(x)=ln(e^x+e^{-(x)/(2)})

We have to find the derivative of function

Differentiate w.r.t x


g'(x)=\frac{1}{e^x+e^{-(x)/(2)}}* (e^x+e^{-(x)/(2)}* (-(1)/(2)))

By using formula


(d(lnx))/(dx)=(1)/(x)


(d e^x)/(dx)=e^x


g'(x)=\frac{e^x-\frac{e^{-(x)/(2)}}{2}}{e^x+e^{-(x)/(2)}}

Hence, the derivative function


g'(x)=\frac{2e^x-e^{-(x)/(2)}}{2(e^x+e^{-(x)/(2)})}

User Philfreo
by
5.6k points