176k views
2 votes
Calculate the theoretical value for the number of moles of CO2 that should have been produced in each balloon assuming that 1.45 g of NaHCO3 is present in an antacid tablet. Use stoichiometry (a mole ratio conversion must be present) to find your answers (there should be three: one answer for each balloon)

User Ottermatic
by
6.3k points

1 Answer

3 votes

Answer:

For 1 antacid tablet (in ballon1) we get .0173 moles of CO2

for 2 tablets (in balloon 2) we get: 2*0,0173= 0.0346 moles of CO2

For 3 tablets (in balloon 3) we get 3* 0.0173 = 0.0519 moles of CO2

Step-by-step explanation:

The complete question:

Calculate the theoretical value for the number of moles of CO2 that should have been produced in each balloon assuming that 1.45 g of NaHCO3 is present in an antacid tablet. Use stoichiometry (a mole ratio conversion must be present) to find your answers (there should be three: one answer for each balloon).

Balloon 1 had 1 antacid tab

Baloon 2 had 2

Balloon 3 had 3

Step 1: Data given

1.45 g of NaHCO3 is present in an antacid tablet

Molar mass of NaHCO3 = 84.00 g/mol

Step 2: The balanced equation

NaHCO3 + H2O → NaOH + H2O + CO2

Step 3: Calculate moles of NaHCO3

Moles NaHCO3 = mass NaHCO3 / molar mass NaHCO3

1.45g / 84.0 g/mol = .0173 moles

Step 4: Calculate moles CO2

For 1 mol NaHCO3 we need 1 mol H2O to produce 1 mol NaOH 1 mol H2O and 1 mol CO2

For 0.0173 moles NaHCO3 we'll get 0.0173 moles CO2

so for 1 antacid tablet we get .0173 moles of CO2

for 2 tablets we get: 2*0,0173 = 0.0346 moles of CO2

For 3 tablets we get 3* 0.0173 = 0.0519 moles of CO2

User Sarhanis
by
6.2k points