207k views
2 votes
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.

y = e^x^2 ln 4x^3

1 Answer

1 vote


(d(lnx))/(dx)=(1)/(x)

Answer:


(dy)/(dx)=e^(x^2)((2x^2ln(4x^3)+3)/(x))

Explanation:

We are given that a function


y=e^(x^2)ln(4x^3)

We have to differentiate w.r.t x


(dy)/(dx)=e^(x^2)* 2xln(4x^3)+e^(x^2)* (1)/(4x^3)* 12x^2

By using formula


(d(lnx))/(dx)=(1)/(x)


(d(e^x))/(dx)=e^x


(dy)/(dx)=e^(x^2)(2xln(4x^3)+(3)/(x))


(dy)/(dx)=e^(x^2)((2x^2ln(4x^3)+3)/(x))

Hence, the derivative of function


(dy)/(dx)=e^(x^2)((2x^2ln(4x^3)+3)/(x))

User Apeirogon Prime
by
5.1k points