173k views
3 votes
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.

y = ln[(4 + x^2)^1/2]/x

User ARTLoe
by
5.6k points

1 Answer

6 votes

Answer:


(dy)/(dx)=(x)/(4+x^(2))

Explanation:

Given the function:


y= \ln{(4+x^2)^{(1)/(2)}

as we know that
(d)/(dx)(ln((f(x))))=(1)/(f(x))(f'(x))


y= \ln{(4+x^2)^{(1)/(2)}


(dy)/(dx)= \frac{1}{(4+x^2)^{(1)/(2)}}(d)/(dx)((4+x^2)^{(1)/(2)})


(dy)/(dx)=\frac{1}{(4+x^2)^{(1)/(2)}}\left((1)/(2)(4+x^2)^{(1)/(2)-1}(0+2x)\right)

now we'll just simplify:


(dy)/(dx)=\frac{1}{(4+x^2)^{(1)/(2)}}\left((1)/(2)(4+x^2)^{-(1)/(2)}(2x)\right)


(dy)/(dx)=(x)/((4+x^(2)))

this is our answer!

User NickDK
by
5.2k points