110k views
4 votes
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.

y = ln(x(x^2 - 1)^1/2)

User Donnit
by
5.4k points

1 Answer

4 votes

Answer:
(2x^2-1)/(x(x^2-1))

Explanation:

The given function :
y=\ln(x(x^2 - 1)^{(1)/(2)})


\Rightarrow\ y=\ln x+\ln (x^2-1)^{(1)/(2)} [
\because \ln(ab)=\ln a +\ln b]


\Rightarrow y=\ln x+(1)/(2)\ln (x^2-1)} [
\because \ln(a)^n=n\ln a]

Now , Differentiate both sides with respect to x , we will get


(dy)/(dx)=(1)/(x)+(1)/(2)((1)/(x^2-1))(d)/(dx)(x^2-1) (By Chain rule)

[Note :
(d)/(dx)(\ln x)=(1)/(x)]


(1)/(x)+(1)/(2)((1)/(x^2-1))(2x-0)

[
\because (d)/(dx)(x^n)=nx^(n-1)]


=(1)/(x)+(1)/(2)((1)/(x^2-1))(2x) = (1)/(x)+(x)/(x^2-1)\\\\\\=((x^2-1)+(x^2))/(x(x^2-1))\\\\\\=(2x^2-1)/(x(x^2-1))

Hence, the derivative of the given function is
(2x^2-1)/(x(x^2-1)) .

User Rogeliog
by
5.6k points